Washtenaw Community College Comprehensive Report

MTH 192 Calculus II Effective Term: Spring/Summer 2020

Course Cover

Division: Math, Science and Engineering Tech **Department:** Math & Engineering Studies

Discipline: Mathematics **Course Number:** 192 **Org Number:** 12200

Full Course Title: Calculus II Transcript Title: Calculus II

Is Consultation with other department(s) required: No

Publish in the Following: College Catalog, Time Schedule, Web Page **Reason for Submission:** Three Year Review / Assessment Report

Change Information:

Consultation with all departments affected by this course is required.

Course description

Rationale: Assessment report completed. Proposed Start Semester: Winter 2020

Course Description: This is the standard second semester single variable calculus course. Students explore topics including applications of integration, integration techniques, L'Hôpital's Rule, numerical integration, improper integrals, infinite series, Taylor series, parametric equations and polar coordinates.

A graphing calculator is required. See the time schedule for current brand and model.

Course Credit Hours

Variable hours: No

Credits: 4

Lecture Hours: Instructor: 60 Student: 60

Lab: Instructor: 0 **Student:** 0 **Clinical: Instructor:** 0 **Student:** 0

Total Contact Hours: Instructor: 60 Student: 60

Repeatable for Credit: NO Grading Methods: Letter Grades

Audit

Are lectures, labs, or clinicals offered as separate sections?: NO (same sections)

College-Level Reading and Writing

College-level Reading & Writing

College-Level Math

Level 7

Requisites

Prerequisite

MTH 191 minimum grade "C"

General Education

Degree Attributes

Assoc in Applied Sci - Area 3

Assoc in Science - Area 3

Assoc in Arts - Area 3

MACRAO Science & Math

Michigan Transfer Agreement - MTA

MTA Mathematics

Request Course Transfer

Proposed For:

Central Michigan University

College for Creative Studies

Eastern Michigan University

Ferris State University

Grand Valley State University

Jackson Community College

Kendall School of Design (Ferris)

Lawrence Tech

Michigan State University

Oakland University

University of Detroit - Mercy

University of Michigan

Wayne State University

Western Michigan University

Student Learning Outcomes

1. Solve a variety of applied integration problems.

Assessment 1

Assessment Tool: Common departmental exam

Assessment Date: Winter 2022

Assessment Cycle: Every Three Years Course section(s)/other population: All Number students to be assessed: All

How the assessment will be scored: Departmentally-developed rubric

Standard of success to be used for this assessment: 70% of students who take the final

assessment will score at least 70% on the common exam questions

Who will score and analyze the data: A subcommittee of the Math 192 instructors

2. Evaluate limits of functions and sequences.

Assessment 1

Assessment Tool: Common departmental exam

Assessment Date: Winter 2022

Assessment Cycle: Every Three Years Course section(s)/other population: All Number students to be assessed: All

How the assessment will be scored: Departmentally-developed rubric

Standard of success to be used for this assessment: 70% of students who take the final

assessment will score at least 70% on the common exam questions

Who will score and analyze the data: A subcommittee of the Math 192 instructors

3. Determine the convergence or divergence of an infinite series using an appropriate test for convergence.

Assessment 1

Assessment Tool: Common departmental exam

Assessment Date: Winter 2022

Assessment Cycle: Every Three Years Course section(s)/other population: All Number students to be assessed: All

How the assessment will be scored: Departmentally-developed rubric

Standard of success to be used for this assessment: 70% of students who take the final

assessment will score at least 70% on the common exam questions

Who will score and analyze the data: A subcommittee of the Math 192 instructors

4. Derive the Taylor Series for a given function, including the interval of convergence.

Assessment 1

Assessment Tool: Common departmental exam

Assessment Date: Winter 2022

Assessment Cycle: Every Three Years Course section(s)/other population: All Number students to be assessed: All

How the assessment will be scored: Departmentally-developed rubric

Standard of success to be used for this assessment: 70% of students who take the final

assessment will score at least 70% on the common exam questions

Who will score and analyze the data: A subcommittee of the Math 192 instructors

5. Solve a variety of differentiation and integration problems in parametric and polar form.

Assessment 1

Assessment Tool: Common departmental exam

Assessment Date: Winter 2022

Assessment Cycle: Every Three Years Course section(s)/other population: All Number students to be assessed: All

How the assessment will be scored: Departmentally-developed rubric

Standard of success to be used for this assessment: 70% of students who take the final

assessment will score at least 70% on the common exam questions

Who will score and analyze the data: A subcommittee of the Math 192 instructors

Course Objectives

- 1. Calculate the volume of a solid of revolution using the washer and shell methods.
- 2. Calculate arc lengths and surface areas in rectangular coordinates.
- 3. Evaluate integrals using integration by parts.
- 4. Evaluate integrals using trigonometric identities and u-substitutions like u=sinx, du=cosx dx.
- 5. Evaluate integrals using trigonometric substitution involving right triangles.
- 6. Evaluate integrals using partial fractions.
- 7. Evaluate limits of indeterminate forms using L'Hôpital's rule.
- 8. Identify and evaluate improper integrals.
- 9. Determine the convergence or divergence of geometric and p-series.
- 10. Determine the convergence or divergence of series using the integral, limit comparison and direct comparison tests.
- 11. Determine the convergence or divergence of alternating series.
- 12. Determine the convergence or divergence of series using the ratio and root tests.
- 13. Graph parametric and polar equations.
- 14. Calculate the equation of the tangent line, and the concavity of a plane curve at a given point.
- 15. Calculate the area bounded by the graph of a polar equation.
- 16. Calculate arc lengths and surface areas in parametric form.
- 17. Calculate arc lengths and surface areas in polar coordinates.

New Resources for Course

Course Textbooks/Resources

Textbooks

Larson & Edwards. Calculus Early Transcendental Functions, 7th ed. Brooks/Cole, 2019

Manuals

Periodicals

Software

Equipment/Facilities

Level III classroom
Testing Center
Computer workstations/lab
Data projector/computer

<u>Reviewer</u>	<u>Action</u>	Date
Faculty Preparer:		
Clifford Taylor	Faculty Preparer	Aug 01, 2019
Department Chair/Area Director:		
Lisa Manoukian	Recommend Approval	Aug 12, 2019
Dean:		
Victor Vega	Recommend Approval	Sep 17, 2019
Curriculum Committee Chair:		
Lisa Veasey	Recommend Approval	Oct 10, 2019
Assessment Committee Chair:		
Vice President for Instruction:		
Kimberly Hurns	Approve	Oct 14, 2019

Washtenaw Community College Comprehensive Report

MTH 192 Calculus II Effective Term: Winter 2019

Course Cover

Division: Math, Science and Engineering Tech

Department: Mathematics Discipline: Mathematics Course Number: 192 Org Number: 12200

Full Course Title: Calculus II Transcript Title: Calculus II

Is Consultation with other department(s) required: No

Publish in the Following: College Catalog , Time Schedule , Web Page **Reason for Submission:** Three Year Review / Assessment Report

Change Information:
Course description
Outcomes/Assessment
Objectives/Evaluation

Rationale: Update student learning outcomes and course objectives.

Proposed Start Semester: Winter 2019

Course Description: This is the standard second semester single variable calculus course. Topics include applications of integration, integration techniques, L'Hôpital's Rule, improper integrals, infinite series, Taylor series, parametric equations and polar coordinates. A graphing calculator is required. See the time schedule for current brand and model.

Course Credit Hours

Variable hours: No

Credits: 4

Lecture Hours: Instructor: 60 Student: 60

Lab: Instructor: 0 Student: 0 Clinical: Instructor: 0 Student: 0

Total Contact Hours: Instructor: 60 Student: 60

Repeatable for Credit: NO Grading Methods: Letter Grades

Audit

Are lectures, labs, or clinicals offered as separate sections?: NO (same sections)

College-Level Reading and Writing

College-level Reading & Writing

College-Level Math

Level 7

Requisites

Prerequisite

MTH 191 minimum grade "C"

General Education

Degree Attributes

Assoc in Applied Sci - Area 3

1 of 4 11/13/2018, 2:38 PM

Assoc in Science - Area 3
Assoc in Arts - Area 3
MACRAO Science & Math
Michigan Transfer Agreement - MTA
MTA Mathematics

Request Course Transfer

Proposed For:

Central Michigan University College for Creative Studies Eastern Michigan University Ferris State University Grand Valley State University Jackson Community College

Kendall School of Design (Ferris)

Lawrence Tech

Michigan State University

Oakland University

University of Detroit - Mercy

University of Michigan

Wayne State University

Western Michigan University

Student Learning Outcomes

1. Solve a variety of applied integration problems.

Assessment 1

Assessment Tool: Common departmental exam

Assessment Date: Fall 2019

Assessment Cycle: Every Three Years Course section(s)/other population: All Number students to be assessed: All

How the assessment will be scored: Departmentally-developed rubric

Standard of success to be used for this assessment: 70% of students who take the final

assessment will score at least 70% on the common exam questions

Who will score and analyze the data: A subcommittee of the Math 192 instructors

2. Evaluate limits of functions and sequences.

Assessment 1

Assessment Tool: Common departmental exam

Assessment Date: Fall 2019

Assessment Cycle: Every Three Years Course section(s)/other population: All Number students to be assessed: All

How the assessment will be scored: Departmentally-developed rubric

Standard of success to be used for this assessment: 70% of students who take the final

assessment will score at least 70% on the common exam questions

Who will score and analyze the data: A subcommittee of the Math 192 instructors

3. Determine the convergence or divergence of an infinite series using an appropriate test for convergence.

Assessment 1

Assessment Tool: Common departmental exam

Assessment Date: Fall 2019

Assessment Cycle: Every Three Years Course section(s)/other population: All

2 of 4 11/13/2018, 2:38 PM

Number students to be assessed: All

How the assessment will be scored: Departmentally-developed rubric

Standard of success to be used for this assessment: 70% of students who take the final

assessment will score at least 70% on the common exam questions

Who will score and analyze the data: A subcommittee of the Math 192 instructors

4. Derive the Taylor Series for a given function, including the interval of convergence.

Assessment 1

Assessment Tool: Common departmental exam

Assessment Date: Fall 2019

Assessment Cycle: Every Three Years Course section(s)/other population: All Number students to be assessed: All

How the assessment will be scored: Departmentally-developed rubric

Standard of success to be used for this assessment: 70% of students who take the final

assessment will score at least 70% on the common exam questions

Who will score and analyze the data: A subcommittee of the Math 192 instructors

5. Solve a variety of differentiation and integration problems in parametric and polar form.

Assessment 1

Assessment Tool: Common departmental exam

Assessment Date: Fall 2019

Assessment Cycle: Every Three Years Course section(s)/other population: All Number students to be assessed: All

How the assessment will be scored: Departmentally-developed rubric

Standard of success to be used for this assessment: 70% of students who take the final

assessment will score at least 70% on the common exam questions

Who will score and analyze the data: A subcommittee of the Math 192 instructors

Course Objectives

- 1. Calculate the volume of a solid of revolution using the Washer and Shell methods.
- 2. Calculate arc lengths and surface areas in rectangular coordinates.
- 3. Evaluate integrals using integration by parts.
- 4. Evaluate integrals using trigonometric identities and u-substitutions like u=sinx, du=cosx dx.
- 5. Evaluate integrals using trigonometric substitution involving right triangles.
- 6. Evaluate integrals using partial fractions.
- 7. Evaluate limits of indeterminate forms using L'Hôpital's rule.
- 8. Identify and evaluate improper integrals.
- 9. Determine the convergence or divergence of Geometric and P-series.
- 10. Determine the convergence or divergence of series using the Integral, Limit Comparison and Direct Comparison tests.
- 11. Determine the convergence or divergence of Alternating series.
- 12. Determine the convergence or divergence of series using the Ratio and Root tests.
- 13. Graph parametric and polar equations.
- 14. Calculate the equation of the tangent line, and the concavity of a plane curve at a given point.
- 15. Calculate the area bounded by the graph of a polar equation.
- 16. Calculate arc lengths and surface areas in parametric form.
- 17. Calculate arc lengths and surface areas in polar coordinates.

New Resources for Course

Course Textbooks/Resources

Textbooks

Larson & Edwards. Calculus Early Transcendental Functions, 7th ed. Brooks/Cole, 2019

Manuals

Periodicals

3 of 4 11/13/2018, 2:38 PM

Software

Equipment/Facilities

Level III classroom
Testing Center
Computer workstations/lab
Data projector/computer

Reviewer	Action	Date
Faculty Preparer:		
Lawrence David	Faculty Preparer	Aug 22, 2018
Department Chair/Area Director:		
Default Washtenaw	Default	Oct 05, 2018
Dean:		
Kristin Good	Recommend Approval	Oct 05, 2018
Curriculum Committee Chair:		
Lisa Veasey	Recommend Approval	Oct 29, 2018
Assessment Committee Chair:		
Shawn Deron	Recommend Approval	Oct 30, 2018
Vice President for Instruction:		
Kimberly Hurns	Approve	Nov 02, 2018

4 of 4